learn. i want to know . bilgi. ogrenelim. دانستنی اموزشی مقاله

learn. i want to know . bilgi. ogrenelim. دانستنی اموزشی مقاله

learn. i want to know . bilgi. ogrenelim. دانستنی اموزشی مقاله

learn. i want to know . bilgi. ogrenelim. دانستنی اموزشی مقاله

learn. i want to know . bilgi. ogrenelim. دانستنی اموزشی مقاله.

بایگانی

۴ مطلب با موضوع «english» ثبت شده است

  • ۰
  • ۰

2 ?What Is Science

2?What Is Science

There is an old parable — not sure if it comes from someone famous I should be citing, or whether I read it in some obscure book years ago — about a lexicographer who was tasked with defining the word “taxi.” Thing is, she lived and worked in a country where every single taxi was yellow, and every single non-taxi car was blue. Makes for an extremely simple definition, she concluded: “Taxis are yellow cars.”

Hopefully the problem is obvious. While that definition suffices to demarcate the differences between taxis and non-taxis in that particular country, it doesn’t actually capture the essence of what makes something a taxi at all. The situation was exacerbated when loyal readers of her dictionary visited another country, in which taxis were green. “Outrageous,” they said. “Everyone knows taxis aren’t green. You people are completely wrong.”

The taxis represent Science.

(It’s usually wise not to explain your parables too explicitly; it cuts down on the possibilities of interpretation, which limits the size of your following. Jesus knew better. But as Bob Dylan said in a related context, “You’re not Him.”)

Defining the concept of “science” is a notoriously tricky business. In particular, there is long-running debate over the demarcation problem, which asks where we should draw the line between science and non-science. I won’t be providing any final answers to this question here. But I do believe that we can parcel out the difficulties into certain distinct classes, based on a simple scheme for describing how science works. Essentially, science consists of the following three-part process:

  1. Think of every possible way the world could be. Label each way an “hypothesis.”
  2. Look at how the world actually is. Call what you see “data” (or “evidence”).
  3. Where possible, choose the hypothesis that provides the best fit to the data.

The steps are not necessarily in chronological order; sometimes the data come first, sometimes it’s the hypotheses. This is basically what’s known as the hypothetico-deductive method, although I’m intentionally being more vague because I certainly don’t think this provides a final-answer definition of “science.”

The reason why it’s hard to provide a cut-and-dried definition of “science” is that every one of these three steps is highly problematic in its own way. Number 3 is probably the trickiest; any finite amount of data will generally underdetermine a choice of hypothesis, and we need to rely on imprecise criteria for deciding between theories. (Thomas Kuhn suggested five values that are invoked in making such choices: accuracy, simplicity, consistency, scope, and fruitfulness. A good list, but far short of an objective algorithm.) But even numbers 1 and 2 would require a great deal more thought before they rose to the level of perfect clarity. It’s not easy to describe how we actually formulate hypotheses, nor how we decide which data to collect. (Problems that are vividly narrated in Zen and the Art of Motorcycle Maintenance, among other places.)

But I think it’s a good basic outline. What you very often find, however, are folks who try to be a bit more specific and programmatic in their definition of science, and end up falling into the trap of our poor lexicographic enthusiasts: they mistake the definition for the thing being defined.

Along these lines, you will sometimes hear claims such as these:

  • “Science assumes naturalism, and therefore cannot speak about the supernatural.”
  • “Scientific theories must make realistically falsifiable predictions.”
  • “Science must be based on experiments that are reproducible.”

In each case, you can kind of see why one might like such a claim to be true — they would make our lives simpler in various ways. But each one of these is straightforwardly false.

I’ve talked about the supernatural issue a couple of times before. Short version: if a so-called supernatural phenomenon has strictly no effect on anything we can observe about the world, then indeed it is not subject to scientific investigation. It’s also completely irrelevant, of course, so who cares? If it does have an effect, than of course science can investigate it, within the above scheme. Why not? Science does not presume the world is natural; most scientists have concluded that the world is natural because that’s the best explanation for what we observe. If you are ever confused about what “science” has to say about something, just ask yourself what actual scientists would do. If real scientists were faced with a purportedly supernatural phenomenon, they wouldn’t just shrug their shoulders because it wasn’t part of their definition of science. They would investigate it and try to come up with the best possible explanation.

The falsifiability question is a trickier one, to which I will not do justice here. It’s a charge that is frequently leveled against string theory and the multiverse, as you probably have heard. People who like to wield the falsifiability cudgel often cite Karl Popper, who purportedly solved the demarcation problem by stating that scientific theories are ones that could in principle be falsified. (Lenny Susskind calls these folks the “Popperazzi.”) It’s the kind of simple, robust, don’t-have-to-think-too-hard philosophy that even a scientist can get behind. Of course, string theory and the multiverse aren’t at all the kinds of things Popper had in mind when he criticized “unfalsifiable” ideas. His bugaboos were Marx’s theory of history, Freudian psychoanalysis, and Adlerian psychology. The problem with these theories, he (correctly) pointed out, was that they told stories that could be made to fit literally any collection of data. Not just “data we could realistically acquire,” but absolutely anything you could imagine happening in the world. That’s completely different from the examples of string theory or the multiverse, which clearly are saying something concrete about the world (the ultraviolet completion of quantum gravity, or conditions in the universe far outside our observable region), but to which we have no experimental access (or almost none). Of course, there’s also the issue that the demarcation problem is a lot trickier than naive Popperianism makes it out to be, but that’s another discussion. The right strategy, once again, is to look at what actual scientists would do or are doing. When faced with difficult problems concerning quantum gravity or the early universe, they follow precisely the outlined program: they invent hypotheses and try to see which one is the best explanation for the data. The fact that the data are relatively crude (the existence of gravity and gauge theory, the known cosmological parameters) doesn’t prevent it from being science.

Noah Smith (an economist) wrote an interesting post related to the “reproducibility” question. It’s another bugaboo, often raised by creationists who want to take jabs at evolution. As a working cosmologist, I know perfectly well that not all good science requires reproducible experiments. We haven’t made a Big Bang in the laboratory — yet. Few of the folks who emphasize reproducibility would go so far as to claim that cosmology (and much of astrophysics) doesn’t count as “science.” Instead, they say things like “Oh, but in cosmology you’re comparing data to theories that are developed here in Earth in response to laboratory experiments, so it’s a more complicated give-and-take.” Yes it is! What they should admit is that all of science involves this more complicated and subtle kind of give-and-take between theories and experiments.

Nothing in our three-step definition of science refers to “reproducibility” (any more than it refers to “naturalism” or “falsifiability”). The key feature of science is that it is empirical — progress is made by comparing multiple plausible theories to actual data — rather than rationalist/logical — deriving truths from reason alone. But when it comes to collecting those data, the only rule is “do the best you can.” Sometimes we’re lucky enough to be able to reproduce conditions exactly (Noah’s “Level Four”), but often we are not. What matters is that there are data, and that attempting to account for them is how we choose between various hypotheses that would have otherwise been plausible or at least conceivable. This might mean that some scientific questions are harder to decide than other ones, but that sounds like the least surprising conclusion in the world.

Some will object that this conception of science is too broad, and encompasses not only economics but also fields like history. To which I can only say, sure. I’ve never really thought there was an important distinction of underlying philosophy between what scientists do and what historians do; it’s all sifting through possibilities on the basis of empirical evidence.

Which is not to say that every worthwhile intellectual endeavor is a version of science in some way. Math and logic are not science, because they don’t involve steps 2 or 3. They are all about figuring out all possible ways that things could be, whether or not things actually are that way in our real world.

On the other hand, things like aesthetics and morality aren’t science either, because they require an additional ingredient — a way to pass judgment, to say that something is beautiful/ugly or right/wrong. Science doesn’t care about that stuff; it describes how the world is, rather than prescribing how it should be. You may think that there are objectively true statements one can make within these realms (“killing babies is wrong,” “Justin Bieber sucks”). But whether or not they are objectively true (they’re not, in any useful sense), they’re not scientific statements, in the way that “the universe is expanding” is a scientific statement. If they were, we could imagine worlds in which they were not true at all (“killing babies is good,” “Justin Bieber is awesome”). Those would be absolutely conceivable worlds, just not the ones in which we happened to live. And the knowledge of which world we lived in would have to come from collecting some data, just as that’s how we learned the universe is expanding.

Sometimes the fact that science is not the only kind of respectable intellectual endeavor gets packaged as the statement that there are other “ways of knowing.” This is an unhelpful framing, since it could be true or false depending on unstated assumptions held by the speaker. Yes, mathematics is a different way of gaining true knowledge than science is, so at that minimal level there are different valid ways of knowing. But they are not merely different methods of getting at the truth, they are ways of getting at different kinds of truth. What makes science (broadly construed as empirical investigation) special is that it is the unique way of learning about the contingent truths that separate our actual world from all the other worlds we might have imagined. We’re not going to get there through meditation, revelation, or a priori philosophizing. Only by doing the hard work of developing theories and comparing them to data. The payoff is worth it.

  • ragnar viking
  • ۰
  • ۰

1?What is science

     Science is the concerted human effort to understand, or to understand better, the history of the natural world and how the natural world works, with observable physical evidence as the basis of that understanding1. It is done through observation of natural phenomena, and/or through experimentation that tries to simulate natural processes under controlled conditions. (There are, of course, more definitions of science.)

     Consider some examples. An ecologist observing the territorial behaviors of bluebirds and a geologist examining the distribution of fossils in an outcrop are both scientists making observations in order to find patterns in natural phenomena. They just do it outdoors and thus entertain the general public with their behavior. An astrophysicist photographing distant galaxies and a climatologist sifting data from weather balloons similarly are also scientists making observations, but in more discrete settings.

     The examples above are observational science, but there is also experimental science. A chemist observing the rates of one chemical reaction at a variety of temperatures and a nuclear physicist recording the results of bombardment of a particular kind of matter with neutrons are both scientists performing experiments to see what consistent patterns emerge. A biologist observing the reaction of a particular tissue to various stimulants is likewise experimenting to find patterns of behavior. These folks usually do their work in labs and wear impressive white lab coats, which seems to mean they make more money too.

     The critical commonality is that all these people are making and recording observations of nature, or of simulations of nature, in order to learn more about how nature, in the broadest sense, works. We'll see below that one of their main goals is to show that old ideas (the ideas of scientists a century ago or perhaps just a year ago) are wrong and that, instead, new ideas may better explain nature.

So why do science? I - the individual perspective

     So why are all these people described above doing what they're doing? In most cases, they're collecting information to test new ideas or to disprove old ones. Scientists become famous for discovering new things that change how we think about nature, whether the discovery is a new species of dinosaur or a new way in which atoms bond. Many scientists find their greatest joy in a previously unknown fact (a discovery) that explains something problem previously not explained, or that overturns some previously accepted idea.

     That's the answer based on noble principles, and it probably explains why many people go into science as a career. On a pragmatic level, people also do science to earn their paychecks. Professors at most universities and many colleges are expected as part of their contractual obligations of employment to do research that makes new contributions to knowledge. If they don't, they lose their jobs, or at least they get lousy raises.

     Scientists also work for corporations and are paid to generate new knowledge about how a particular chemical affects the growth of soybeans or how petroleum forms deep in the earth. These scientists get paid better, but they may work in obscurity because the knowledge they generate is kept secret by their employers for the development of new products or technologies. In fact, these folks at Megacorp do science, in that they and people within their company learn new things, but it may be years before their work becomes science in the sense of a contribution to humanity's body of knowledge beyond Megacorp's walls.

Why do Science? II - The Societal Perspective

     If the ideas above help explain why individuals do science, one might still wonder why societies and nations pay those individuals to do science. Why does a society devote some of its resources to this business of developing new knowledge about the natural world, or what has motivated these scientists to devote their lives to developing this new knowledge?

     One realm of answers lies in the desire to improve people's lives. Geneticists trying to understand how certain conditions are passed from generation to generation and biologists tracing the pathways by which diseases are transmitted are clearly seeking information that may better the lives of very ordinary people. Earth scientists developing better models for the prediction of weather or for the prediction of earthquakes, landslides, and volcanic eruptions are likewise seeking knowledge that can help avoid the hardships that have plagued humanity for centuries. Any society concerned about the welfare of its people, which is at the least any democratic society, will support efforts like these to better people's lives.

     Another realm of answers lies in a society's desires for economic development. Many earth scientists devote their work to finding more efficient or more effective ways to discover or recover natural resources like petroleum and ores. Plant scientists seeking strains or species of fruiting plants for crops are ultimately working to increase the agricultural output that nutritionally and literally enriches nations. Chemists developing new chemical substances with potential technological applications and physicists developing new phenomena like superconductivity are likewise developing knowledge that may spur economic development. In a world where nations increasingly view themselves as caught up in economic competition, support of such science is nothing less than an investment in the economic future.

     Another whole realm of answers lies in humanity's increasing control over our planet and its environment. Much science is done to understand how the toxins and wastes of our society pass through our water, soil, and air, potentially to our own detriment. Much science is also done to understand how changes that we cause in our atmosphere and oceans may change the climate in which we live and that controls our sources of food and water. In a sense, such science seeks to develop the owner's manual that human beings will need as they increasingly, if unwittingly, take control of the global ecosystem and a host of local ecosystems.

     Lastly, societies support science because of simple curiosity and because of the satisfaction and enlightenment that come from knowledge of the world around us.  Few of us will ever derive any economic benefit from knowing that the starlight we see in a clear night sky left those stars thousands and even millions of years ago, so that we observe such light as messengers of a very distant past.  However, the awe, perspective, and perhaps even serenity derived from that knowledge is very valuable to many of us.  Likewise, few of us will derive greater physical well-being from watching a flowing stream and from reflecting on the hydrologic cycle through which that stream's water has passed, from the distant ocean to the floating clouds of our skies to the rains and storms upstream and now to the river channel at which we stand.  However, the sense of interconnectedness that comes from such knowledge enriches our understanding of our world, and of our lives, in a very valuable way.  In recognizing that the light of the sun and the water of a well are not here solely because we profit from their presence, we additionally gain an analogy from which we can recognize that the people in the world around us are not here solely to conform to our wishes and needs.  When intangible benefits like these are combined with the more tangible ones outlined above, it's no wonder that most modern societies support scientific research for the improvement of our understanding of the world around us.

How Research becomes Scientific Knowledge

     As our friends at Megacorp illustrate, doing research in the lab or in the field may be science, but it isn't necessarily a contribution to knowledge. No one in the scientific community will know about, or place much confidence in, a piece of scientific research until it is published in a peer-reviewed journal. They may hear about new research at a meeting or learn about it through the grapevine of newsgroups, but nothing's taken too seriously until publication of the data.

     That means that our ecologist has to write a paper (called a "manuscript" for rather old-fashioned reasons). In the manuscript she justifies why her particular piece of research is significant, she details what methods she used in doing it, she reports exactly what she observed as the results, and then she explains what her observations mean relative to what was already known.

     She then sends her manuscript to the editors of a scientific journal, who send it to two or three experts for review. If those experts report back that the research was done in a methodologically sound way and that the results contribute new and useful knowledge, the editor then approves publication, although almost inevitably with some changes or additions. Within a few months (we hope), the paper appears in a new issue of the journal, and scientists around the world learn about our ecologist's findings. They then decide for themselves whether they think the methods used were adequate and whether the results mean something new and exciting, and gradually the paper changes the way people think about the world.

     Of course there are some subtleties in this business. If the manuscript was sent to a prestigious journal like Science or Nature, the competition for publication there means that the editors can select what they think are only the most ground-breaking manuscripts and reject the rest, even though the manuscripts are all well-done science. The authors of the rejected manuscripts then send their work to somewhat less exalted journals, where the manuscripts probably get published but are read by a somewhat smaller audience. At the other end of the spectrum may be the South Georgia Journal of Backwater Studies, where the editor gets relatively few submissions and can't be too picky about what he or she accepts into the journal, and not too many people read it. For better or worse, scientists are more likely to read, and more likely to accept, work published in widely-distributed major journals than in regional journals with small circulation.

     To summarize, science becomes knowledge by publication of research results. It then may become more general knowledge as writers of textbooks pick and choose what to put in their texts, and as professors and teachers then decide what to stress from those textbooks. Publication is critical, although not all publication is created equal. The more a newly published piece of research challenges established ideas, the more it will be noted by other scientists and by the world in general.


Science and Change (and Miss Marple)

     If scientists are constantly trying to make new discoveries or to develop new concepts and theories, then the body of knowledge produced by science should undergo constant change. Such change is progress toward a better understanding of nature. It is achieved by constantly questioning whether our current ideas are correct. As the famous American astronomer Maria Mitchell (1818-1889) put it, "Question everything".

     The result is that theories come and go, or at least are modified through time, as old ideas are questioned and new evidence is discovered. In the words of Karl Popper, "Science is a history of corrected mistakes", and even Albert Einstein remarked of himself "That fellow Einstein . . . every year retracts what he wrote the year before". Many scientists have remarked that they would like to return to life in a few centuries to see what new knowledge and new ideas have been developed by then - and to see which of their own century's ideas have been discarded. Our ideas today should be compatible with all the evidence we have, and we hope that our ideas will survive the tests of the future. However, any look at history forces us to realize that the future is likely to provide new evidence that will lead to at least somewhat different interpretations.

     Some scientists become sufficiently ego-involved that they refuse to accept new evidence and new ideas. In that case, in the words of one pundit, "science advances funeral by funeral". However, most scientists realize that today's theories are probably the future's outmoded ideas, and the best we can hope is that our theories will survive with some tinkering and fine-tuning by future generations.

     We can go back to Copernicus to illustrate this. Most of us today, if asked on a street corner, would say that we accept Copernicus's idea that the earth moves around the sun - we would say that the heliocentric theory seems correct. However, Copernicus himself maintained that the orbits of the planets around the sun were perfectly circular. A couple of centuries later, in Newton's time, it became apparent that those orbits are ellipses. The heliocentric theory wasn't discarded; it was just modified to account for more detailed new observations. In the twentieth century, we've additionally found that the exact shapes of the ellipses aren't constant (hence the Milankovitch cycles that may have influenced the periodicity of glaciation). However, we haven't gone back to the idea of an earth-centered universe. Instead, we still accept a heliocentric theory - it's just one that's been modified through time as new data have emerged.

     The notion that scientific ideas change, and should be expected to change, is sometimes lost on the more vociferous critics of science. One good example is the Big Bang theory. Every new astronomical discovery seems to prompt someone to say "See, the Big Bang theory didn't predict that, so the whole thing must be wrong". Instead, the discovery prompts a change, usually a minor one, in the theory. However, once the astrophysicists have tinkered with the theory's details enough to account for the new discovery, the critics then say "See, the Big Bang theory has been discarded". Instead, it's just been modified to account for new data, which is exactly what we've said ought to happen through time to any scientific idea.

     Try an analogy: Imagine that your favorite fictional detective (Sherlock Holmes, Miss Marple, Nancy Drew, or whoever) is working on a difficult case in which the clues only come by fits and starts. Most detectives keep their working hypotheses to themselves until they've solved the case. However, let's assume that our detective decides this time to think out loud as the story unfolds, revealing their current prime suspect and hypothesized chronology of the crime as they go along. Now introduce a character who accompanies the detective and who, as each clue is uncovered, exclaims "See, this changes what you thought before - you must be all wrong about everything!" Our detective will think, but probably have the grace to not say, "No, the new evidence just helps me sharpen the cloudy picture I had before". The same is true in science, except that nature never breaks down in the last scene and explains how she done it.  

 

Science and Knowledge

     So what does all this mean? It means that science does not presently, and probably never can, give statements of absolute eternal truth - it only provides theories. We know that those theories will probably be refined in the future, and some of them may even be discarded in favor of theories that make more sense in light of data generated by future scientists. However, our present theories are our best available explanations of the world. They explain, and have been tested against, a vast amount of information.

Consider some of the information against which we've tested our theories:

  • We've examined the DNA, cells, tissues, organs, and bodies of thousands if not millions of species of organisms, from bacteria to cacti to great blue whales, at scales from electron microscopy to global ecology.
  • We've examined the physical behaviour of particles ranging in size from quarks to stars and at times scales from femtoseconds to millions of years.
  • We've characterized the 90 or so chemical elements that occur naturally on earth and several more that we've synthesized.
  • We've poked at nearly every rock on the earth's surface and drilled as much as six miles into the earth to recover and examine more.
  • We've used seismology to study the earth's internal structure, both detecting shallow faults and examining the behavior of the planet's core.
  • We've studied the earth's oceans with dredges, bottles, buoys, boats, drillships, submersibles, and satellites.
  • We've monitored and sampled Earth's atmosphere at a global scale on a minute-by-minute basis.
  • We've scanned outer space with telescopes employing radiation ranging in wavelength from infrared to X-rays, and we've sent probes to examine both our sun and the distant planets of our solar system.
  • We've personally explored the surface of our moon and brought back rocks from there, and we've sampled a huge number of meteorites to learn more about matter from beyond our planet.
         We will do more in the centuries to come, but we've already assembled a vast array of information on which to build the theories that are our present scientific understanding of the universe.

         This leaves people with a choice today. One option is to accept, perhaps with some skepticism, the scientific (and only theoretical) understanding of the natural world, which is derived from all the observations and measurements described above. The other option, or perhaps an other option, is to accept traditional understandings3 of the natural world developed centuries or even millennia ago by people who, regardless how wise or well-meaning, had only sharp eyes and fertile imaginations as their best tools.


    • ragnar viking
    google-site-verification: google4340d9b39154d580.html